Serveur d'exploration MERS

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Living Radical Polymerization as a Tool for the Synthesis of Polymer‐Protein/Peptide Bioconjugates

Identifieur interne : 000190 ( France/Analysis ); précédent : 000189; suivant : 000191

Living Radical Polymerization as a Tool for the Synthesis of Polymer‐Protein/Peptide Bioconjugates

Auteurs : Julien Nicolas [France] ; Giuseppe Mantovani [Royaume-Uni] ; David M. Haddleton [Royaume-Uni]

Source :

RBID : ISTEX:615267DEF2C59379F99D66BADA3FE6429177EDA5

English descriptors

Abstract

Combinations of synthetic and natural macromolecules offer a route to new functional materials. While biological and polymer chemistry may not be natural bedfellows, many researchers are focusing their attention on the benefits of combining these fields. Recent advances in living radical polymerization have provided methods to build tailor‐made macromolecular moieties using relatively simple processes. This has led to a plethora of block copolymers, end‐functional polymers and polymers with a whole range of biological recognition abilities. This review covers work carried out until late 2006 combining living radical polymerization with proteins and peptides in the rapidly‐expanding field of bioconjugation.

Url:
DOI: 10.1002/marc.200700112


Affiliations:


Links toward previous steps (curation, corpus...)


Links to Exploration step

ISTEX:615267DEF2C59379F99D66BADA3FE6429177EDA5

Le document en format XML

<record>
<TEI wicri:istexFullTextTei="biblStruct">
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Living Radical Polymerization as a Tool for the Synthesis of Polymer‐Protein/Peptide Bioconjugates</title>
<author>
<name sortKey="Nicolas, Julien" sort="Nicolas, Julien" uniqKey="Nicolas J" first="Julien" last="Nicolas">Julien Nicolas</name>
</author>
<author>
<name sortKey="Mantovani, Giuseppe" sort="Mantovani, Giuseppe" uniqKey="Mantovani G" first="Giuseppe" last="Mantovani">Giuseppe Mantovani</name>
</author>
<author>
<name sortKey="Haddleton, David M" sort="Haddleton, David M" uniqKey="Haddleton D" first="David M." last="Haddleton">David M. Haddleton</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">ISTEX</idno>
<idno type="RBID">ISTEX:615267DEF2C59379F99D66BADA3FE6429177EDA5</idno>
<date when="2007" year="2007">2007</date>
<idno type="doi">10.1002/marc.200700112</idno>
<idno type="url">https://api.istex.fr/ark:/67375/WNG-059SNL1S-G/fulltext.pdf</idno>
<idno type="wicri:Area/Istex/Corpus">001A49</idno>
<idno type="wicri:explorRef" wicri:stream="Istex" wicri:step="Corpus" wicri:corpus="ISTEX">001A49</idno>
<idno type="wicri:Area/Istex/Curation">001A49</idno>
<idno type="wicri:Area/Istex/Checkpoint">000898</idno>
<idno type="wicri:explorRef" wicri:stream="Istex" wicri:step="Checkpoint">000898</idno>
<idno type="wicri:doubleKey">1022-1336:2007:Nicolas J:living:radical:polymerization</idno>
<idno type="wicri:Area/Main/Merge">002C71</idno>
<idno type="wicri:Area/Main/Curation">002C45</idno>
<idno type="wicri:Area/Main/Exploration">002C45</idno>
<idno type="wicri:Area/France/Extraction">000190</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title level="a" type="main">Living Radical Polymerization as a Tool for the Synthesis of Polymer‐Protein/Peptide Bioconjugates</title>
<author>
<name sortKey="Nicolas, Julien" sort="Nicolas, Julien" uniqKey="Nicolas J" first="Julien" last="Nicolas">Julien Nicolas</name>
<affiliation wicri:level="3">
<country xml:lang="fr">France</country>
<wicri:regionArea>Laboratoire de Physico‐Chimie, Pharmacotechnie et Biopharmacie, UMR CNRS 8612, Faculté de Pharmacie, Université Paris‐Sud XI, 5 rue Jean‐Baptiste Clément, 92296 Châtenay‐Malabry</wicri:regionArea>
<placeName>
<region type="region" nuts="2">Île-de-France</region>
<settlement type="city">Châtenay‐Malabry</settlement>
</placeName>
</affiliation>
<affiliation wicri:level="1">
<country wicri:rule="url">France</country>
</affiliation>
<affiliation></affiliation>
</author>
<author>
<name sortKey="Mantovani, Giuseppe" sort="Mantovani, Giuseppe" uniqKey="Mantovani G" first="Giuseppe" last="Mantovani">Giuseppe Mantovani</name>
<affiliation wicri:level="1">
<country xml:lang="fr">Royaume-Uni</country>
<wicri:regionArea>Department of Chemistry, University of Warwick, Coventry CV4 7AL</wicri:regionArea>
<wicri:noRegion>Coventry CV4 7AL</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Haddleton, David M" sort="Haddleton, David M" uniqKey="Haddleton D" first="David M." last="Haddleton">David M. Haddleton</name>
<affiliation wicri:level="1">
<country xml:lang="fr">Royaume-Uni</country>
<wicri:regionArea>Department of Chemistry, University of Warwick, Coventry CV4 7AL</wicri:regionArea>
<wicri:noRegion>Coventry CV4 7AL</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<country wicri:rule="url">Royaume-Uni</country>
</affiliation>
<affiliation></affiliation>
</author>
</analytic>
<monogr></monogr>
<series>
<title level="j" type="main">Macromolecular Rapid Communications</title>
<title level="j" type="alt">MACROMOLECULAR RAPID COMMUNICATIONS</title>
<idno type="ISSN">1022-1336</idno>
<idno type="eISSN">1521-3927</idno>
<imprint>
<biblScope unit="vol">28</biblScope>
<biblScope unit="issue">10</biblScope>
<biblScope unit="page" from="1083">1083</biblScope>
<biblScope unit="page" to="1111">1111</biblScope>
<biblScope unit="page-count">29</biblScope>
<publisher>WILEY‐VCH Verlag</publisher>
<pubPlace>Weinheim</pubPlace>
<date type="published" when="2007-05-16">2007-05-16</date>
</imprint>
<idno type="ISSN">1022-1336</idno>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<idno type="ISSN">1022-1336</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="Teeft" xml:lang="en">
<term>Acrylamide</term>
<term>Acrylate</term>
<term>Acrylic acid</term>
<term>Active species</term>
<term>Ambient</term>
<term>Ambient temperature</term>
<term>Amidation reaction</term>
<term>Amine</term>
<term>Angew</term>
<term>Aqueous solution</term>
<term>Atom transfer</term>
<term>Atrp</term>
<term>Atrp initiator</term>
<term>Ayres</term>
<term>Azide</term>
<term>Bioconjugate</term>
<term>Bioconjugate chem</term>
<term>Bioconjugates</term>
<term>Bioconjugation</term>
<term>Biohybrid</term>
<term>Biomacromolecules</term>
<term>Biotin</term>
<term>Biotinylated</term>
<term>Block copolymer</term>
<term>Block copolymers</term>
<term>Broad range</term>
<term>Chaikof</term>
<term>Charleux</term>
<term>Chem</term>
<term>Click</term>
<term>Commun</term>
<term>Conjugation</term>
<term>Consecutive atrp</term>
<term>Copolymer</term>
<term>Covalent</term>
<term>Covalent link</term>
<term>Coworkers</term>
<term>Cyclic</term>
<term>Deming</term>
<term>Difunctional atrp initiator</term>
<term>Dmso</term>
<term>Dormant species</term>
<term>Drug delivery</term>
<term>Ester</term>
<term>Functional groups</term>
<term>Functionality</term>
<term>Functionalized</term>
<term>Glycopolymer</term>
<term>Glycopolymers</term>
<term>Gmbh</term>
<term>Gnanou</term>
<term>Good control</term>
<term>Haddleton</term>
<term>Haddleton figure</term>
<term>Hawker</term>
<term>Hest</term>
<term>Hydroxyl groups</term>
<term>Initiator</term>
<term>Kgaa</term>
<term>Kinetic plot</term>
<term>Lcst</term>
<term>Linear evolution</term>
<term>Lutz</term>
<term>Macroinitiator</term>
<term>Macromol</term>
<term>Macromolecular</term>
<term>Macromolecular architectures</term>
<term>Macromolecular moieties</term>
<term>Macromolecule</term>
<term>Mantovani</term>
<term>Matyjaszewski</term>
<term>Methacrylate</term>
<term>Methyl</term>
<term>Methyl acrylate</term>
<term>Miktoarm copolymers</term>
<term>Mild conditions</term>
<term>Model peptide</term>
<term>Moiety</term>
<term>Molar</term>
<term>Molar masses</term>
<term>Molar ratio</term>
<term>Molecular weight</term>
<term>Molecular weights</term>
<term>Monomer</term>
<term>Monomer conversion</term>
<term>Nanoparticles</term>
<term>Nanotube</term>
<term>Nitroxide</term>
<term>Peptide</term>
<term>Peptide sequence</term>
<term>Peptide synthesis</term>
<term>Pnipam</term>
<term>Polydispersity</term>
<term>Polydispersity indices</term>
<term>Polym</term>
<term>Polymer</term>
<term>Polymer brushes</term>
<term>Polymer chain</term>
<term>Polymer chains</term>
<term>Polymerization</term>
<term>Polymerization time</term>
<term>Polymerized</term>
<term>Polypeptide</term>
<term>Preformed</term>
<term>Preformed polymer</term>
<term>Promising results</term>
<term>Propagating radicals</term>
<term>Protein transduction domain</term>
<term>Radical polymerization</term>
<term>Rapid commun</term>
<term>Reactive</term>
<term>Remsen</term>
<term>Reversible termination</term>
<term>Rizzardo</term>
<term>Sequential</term>
<term>Sequential atrp</term>
<term>Sharpless</term>
<term>Streptavidin</term>
<term>Synthetic polymers</term>
<term>Triblock</term>
<term>Triblock copolymer</term>
<term>Triblock copolymers</term>
<term>Uorescence</term>
<term>Uorescent</term>
<term>Verlag</term>
<term>Verlag gmbh</term>
<term>Wang</term>
<term>Weinheim</term>
<term>Wide range</term>
<term>Wooley</term>
<term>Zhang</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Combinations of synthetic and natural macromolecules offer a route to new functional materials. While biological and polymer chemistry may not be natural bedfellows, many researchers are focusing their attention on the benefits of combining these fields. Recent advances in living radical polymerization have provided methods to build tailor‐made macromolecular moieties using relatively simple processes. This has led to a plethora of block copolymers, end‐functional polymers and polymers with a whole range of biological recognition abilities. This review covers work carried out until late 2006 combining living radical polymerization with proteins and peptides in the rapidly‐expanding field of bioconjugation.</div>
</front>
</TEI>
<affiliations>
<list>
<country>
<li>France</li>
<li>Royaume-Uni</li>
</country>
<region>
<li>Île-de-France</li>
</region>
<settlement>
<li>Châtenay‐Malabry</li>
</settlement>
</list>
<tree>
<country name="France">
<region name="Île-de-France">
<name sortKey="Nicolas, Julien" sort="Nicolas, Julien" uniqKey="Nicolas J" first="Julien" last="Nicolas">Julien Nicolas</name>
</region>
<name sortKey="Nicolas, Julien" sort="Nicolas, Julien" uniqKey="Nicolas J" first="Julien" last="Nicolas">Julien Nicolas</name>
</country>
<country name="Royaume-Uni">
<noRegion>
<name sortKey="Mantovani, Giuseppe" sort="Mantovani, Giuseppe" uniqKey="Mantovani G" first="Giuseppe" last="Mantovani">Giuseppe Mantovani</name>
</noRegion>
<name sortKey="Haddleton, David M" sort="Haddleton, David M" uniqKey="Haddleton D" first="David M." last="Haddleton">David M. Haddleton</name>
<name sortKey="Haddleton, David M" sort="Haddleton, David M" uniqKey="Haddleton D" first="David M." last="Haddleton">David M. Haddleton</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/MersV1/Data/France/Analysis
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000190 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/France/Analysis/biblio.hfd -nk 000190 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    MersV1
   |flux=    France
   |étape=   Analysis
   |type=    RBID
   |clé=     ISTEX:615267DEF2C59379F99D66BADA3FE6429177EDA5
   |texte=   Living Radical Polymerization as a Tool for the Synthesis of Polymer‐Protein/Peptide Bioconjugates
}}

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Mon Apr 20 23:26:43 2020. Site generation: Sat Mar 27 09:06:09 2021